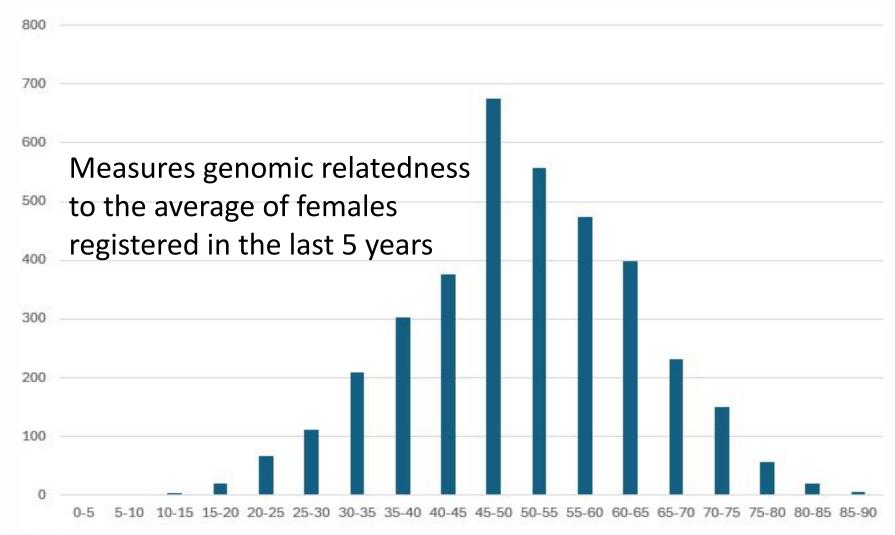


12 months of innovation

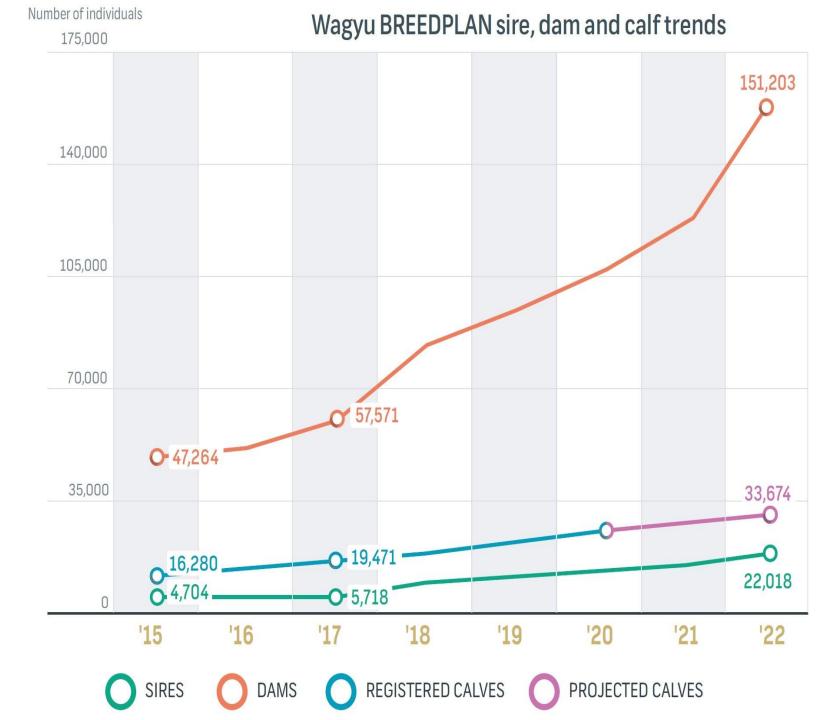
- Genetic Diversity released
- Genomic Inbreeding released
- Selection Index updates
- Wagyu Feeder Check 2.0
- Carcase data hits 50,000 records
- Developing new fatty acid test
- AWAPTP carcase data coming in
- Helical database ready to go
- Discovering new recessives
- Biotechnology Applications

Genetic Diversity
and
Genomic Inbreeding


Require Genomic Genotypes (Currently 100K best)

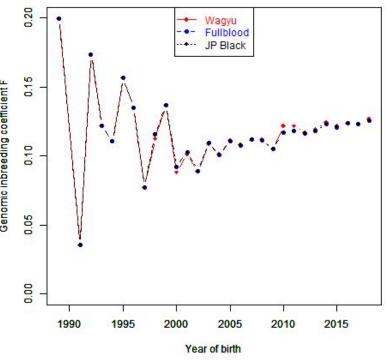
Fullblood Japanese Black Only

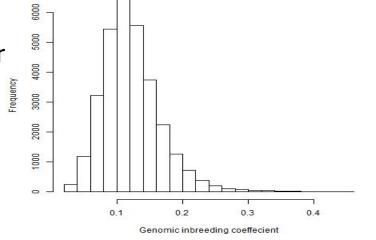
Fullblood Black - Genetic Diversity



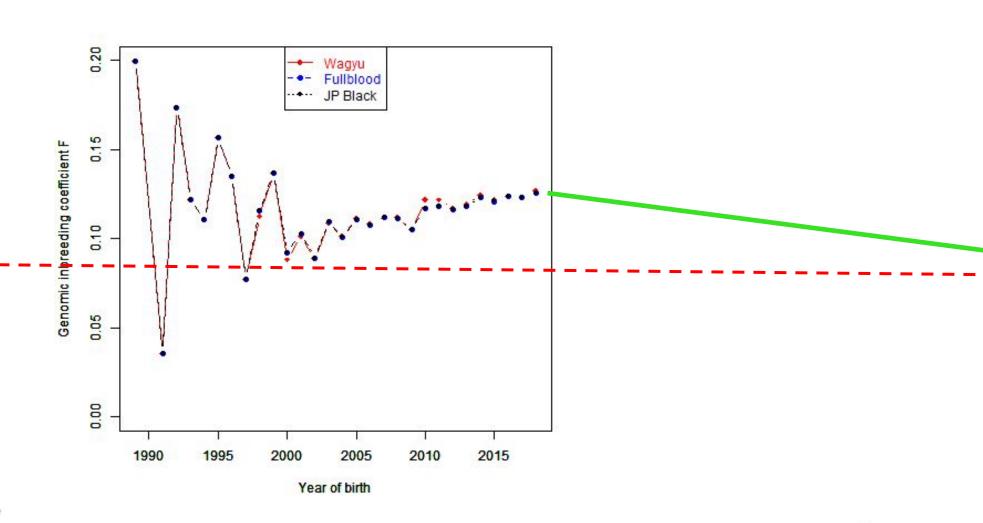
222 to > 350,000 registered Wagyu Now at 2025

ГІОШ


- >230,000 cows (have calves recorded against them)
- >25,000 sires (have calves recorded against them)
- >100,000 calves registered not yet with calves of their own


Inbreeding trends in Wagyu

Inbreeding depression is the reduced survival and fertility of offspring of a survival and sur documented in wild animal and plant populations, as well as in humans.


Inbreeding depression is predominantly caused by recessive deleterious

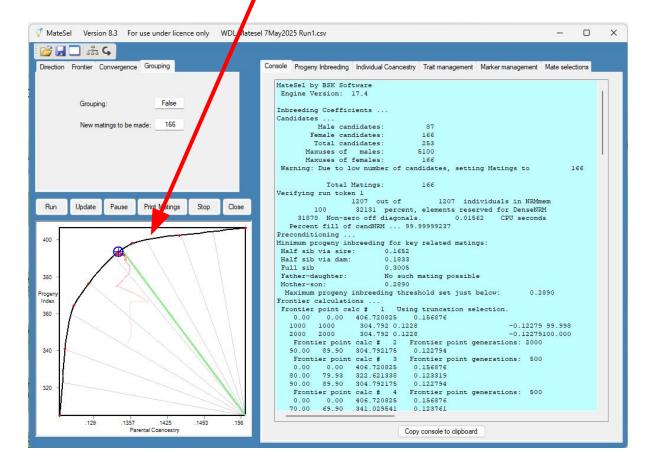
Intercrossing inbred strains improves performance (heterosis), particular

Future breeding trends in Wagyu

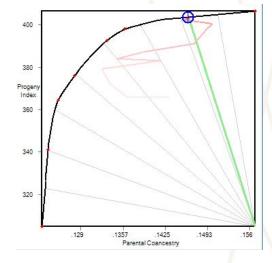
What is MateSel?

- MateSel is a software package used to optimise your breeding program.
- It makes selection and mating decisions while balancing genetic gain and diversity
- It also accommodates specific technical and logistical constraints as specified by the user.
- It is widely used across different industries (beef, sheep, dairy, pigs, fish, trees, crops, etc..)

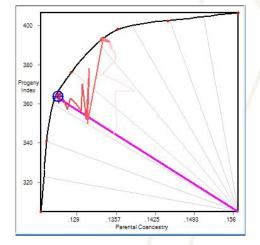
Strategies for MateSel runs



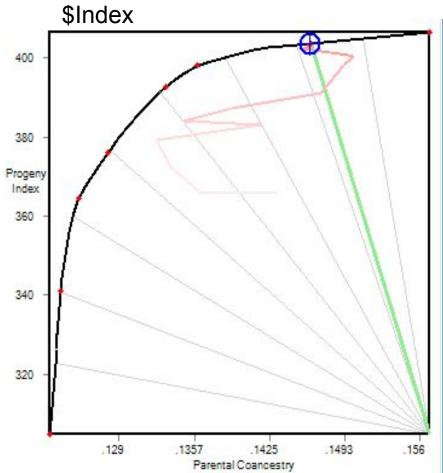
- Manage genetic defects
- Manage trait distributions, including Tactical Desired Gains
- Handle the use of reproductive technologies (AI, IVF, ET)
- Impose a wide range of constraints on animal movement, numbers of matings, patterns of mating, and others
- Use genomic information for mating decisions as well as for selection
- •Can run on thousands of animals

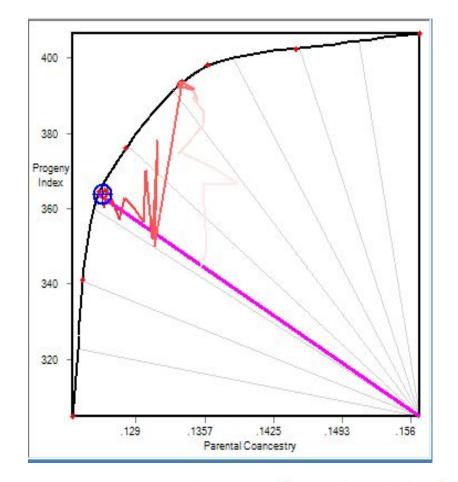

MateSel's interface

The software creates a **frontier**, which reflects the emphases on \$Index (e/g. BFI) vs Diversity (i.e. Coancestry)

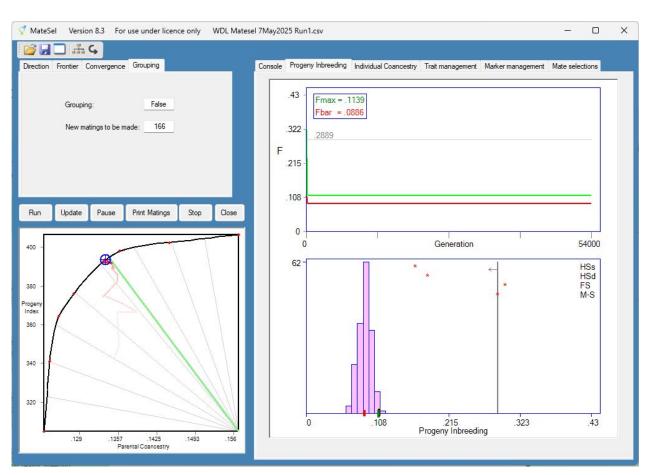


More emphasis on \$Index

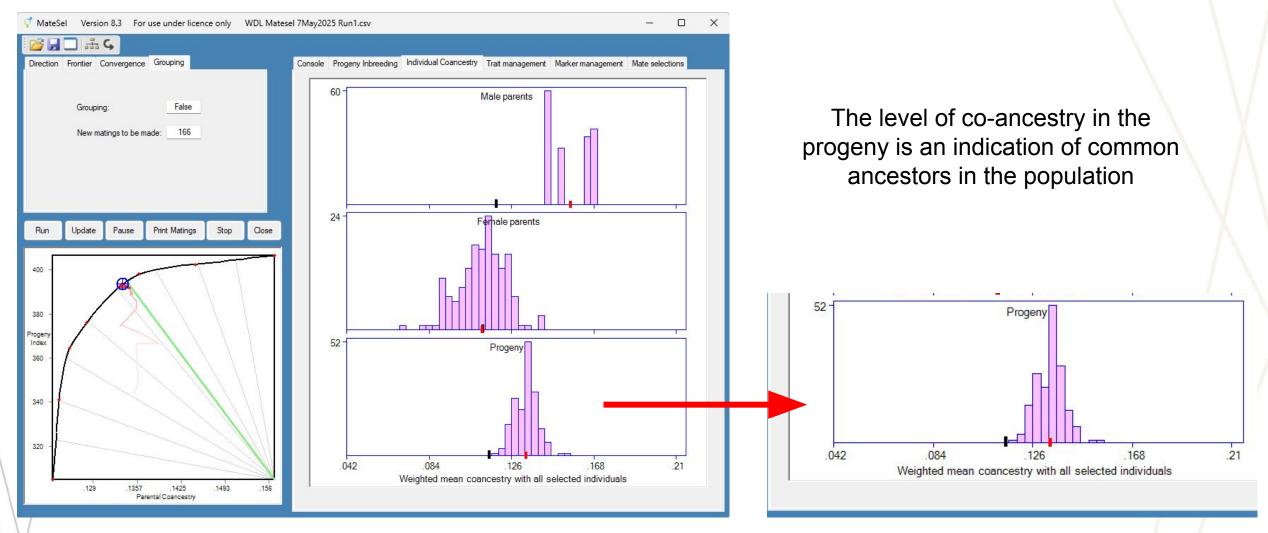

More emphasis on Diversity


Selection Frontier

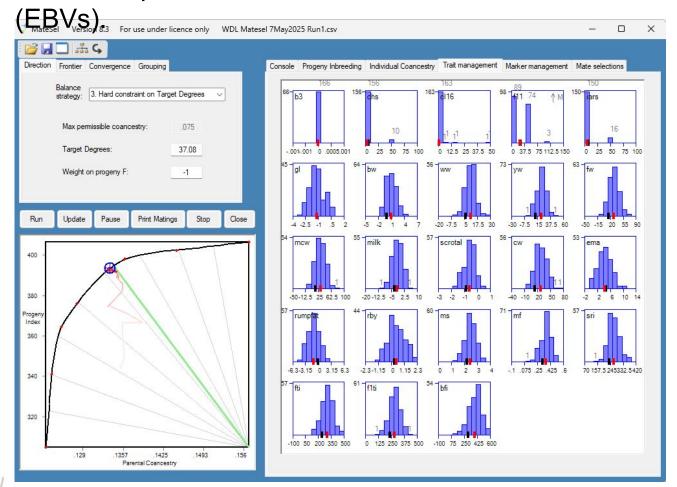
More emphasis on BFI


More emphasis on Diversity


Progeny Inbreeding


Once the software converges, the progeny inbreeding from the proposed mating is calculated

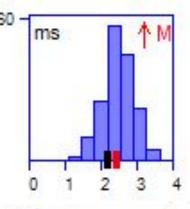
In this example the Inbreeding (F) ranges from 8.9% to a max 11.4%

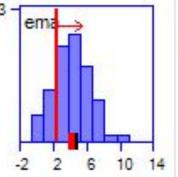


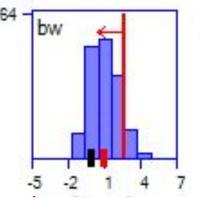
Progeny Diversity (Coancestry) MateSel

Fine Tunning

We can impose restrictions on different traits

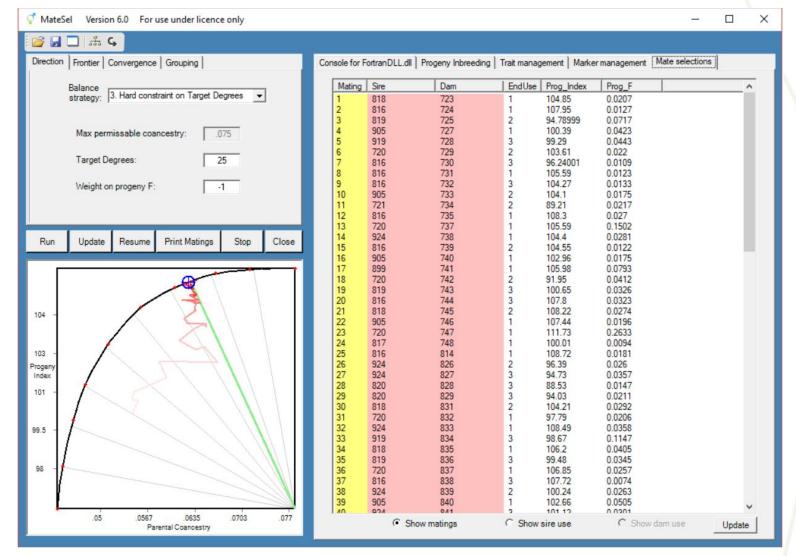





For example:

- We can force to increase the mean of MS on the progeny
- We can force a Min value on the EMA of the progeny

 We can force a Max value on the BW of the progeny



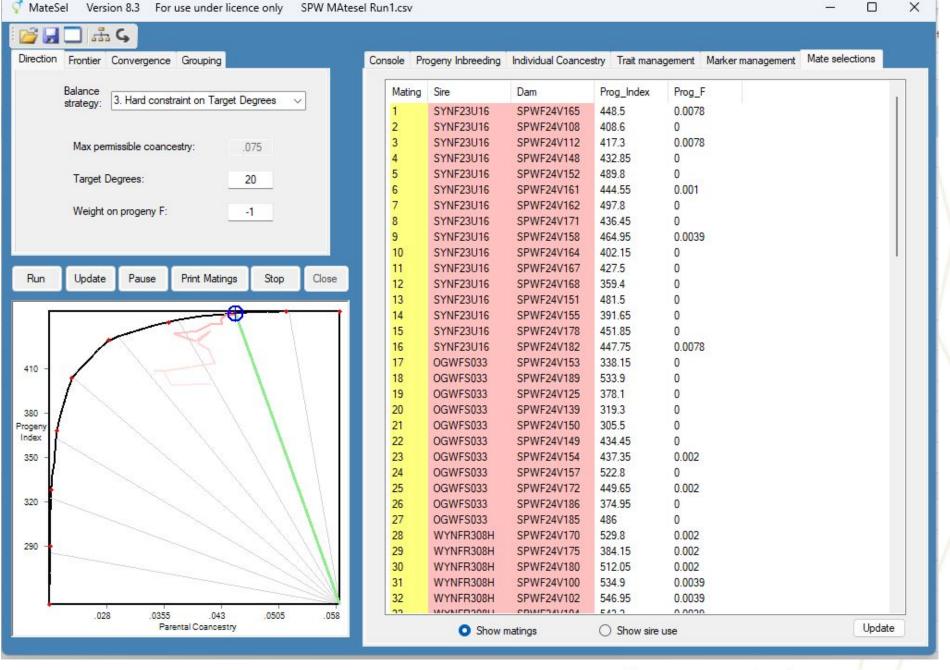
Proposed Mating List:

Once that the run is completed a list of Matings with the Progeny \$Index and **Progeny Inbreeding** is provided

Example

100 V Heifers from Sahara Park herd 92 Bulls from AWA-PTP Cohorts 1-3

Min Use for Bulls set at 10 Max Use for Bulls set at 30

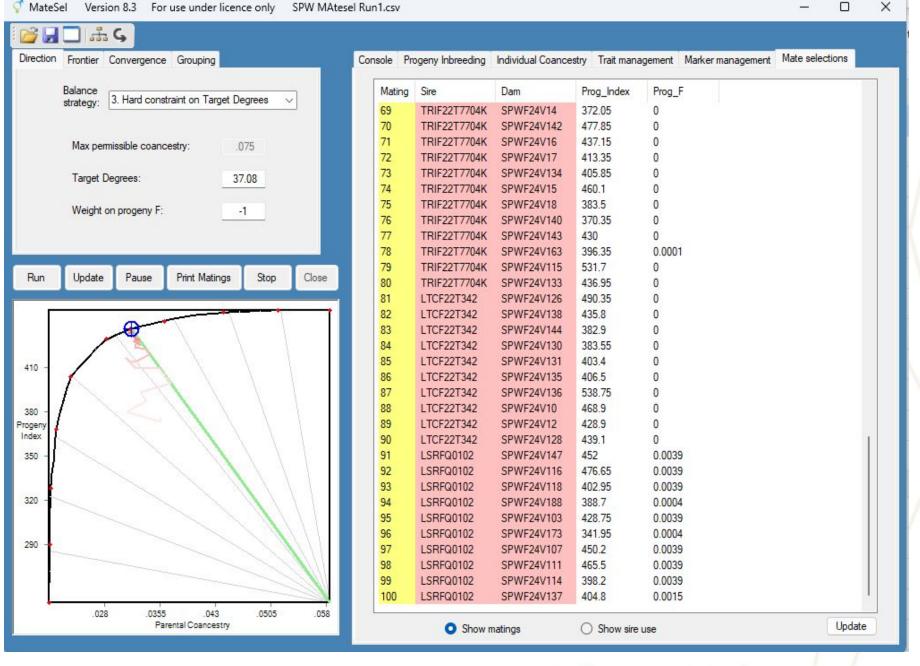

Scenario 1: Set Objective at high BFI

Scenario 2: Set Objective at balanced BFI and

diversity

Scenario 3: Set Objective at high diversity

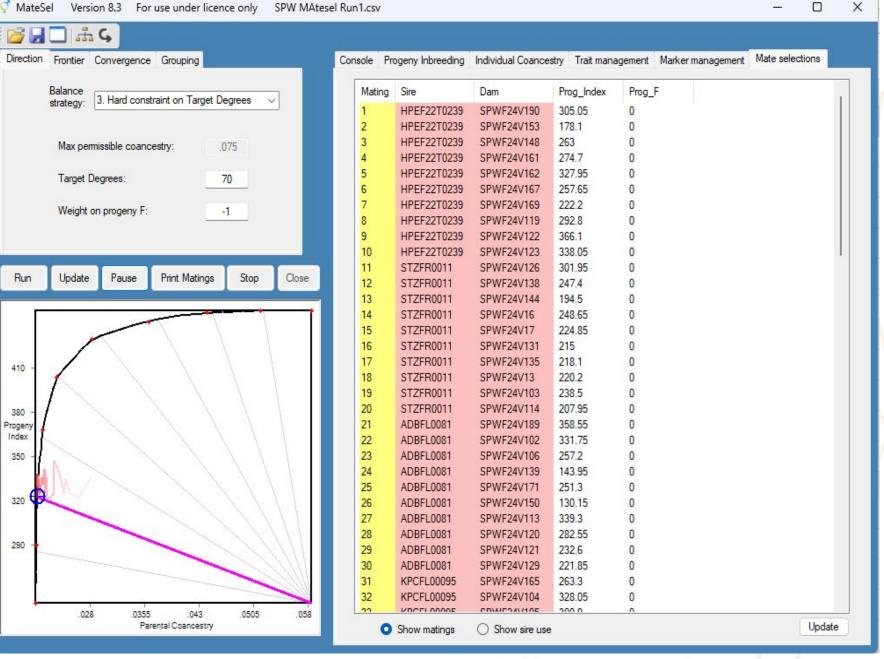
Scenario 1 High BFI

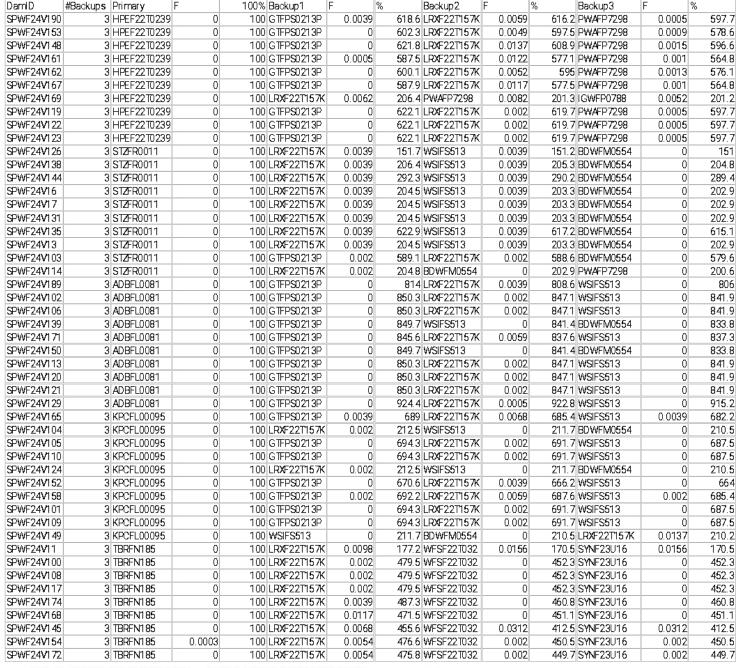


DamID	#Backups Primary	F	100% Backup1	F	%	Backup2	F %	Backup3	F	%
SPWF24V165	3 SYNF23U16	0.0078	100 TRIF22T7704K	0.0081	99.5	LTCF22T342	0.0278	98.4 LSRFQ0102	0.0514	97.7
SPWF24V108	3 SYNF23U16	0	100 TRIF22T7704K	0.0078	99.1	LTCF22T342	0.0391	97.4 OGWFS033	0	
SPWF24V112	3 SYNF23U16	0.0078	100 TRIF22T7704K	0.0117	99.3	LTCF22T342	0.0469	97.4 OGWFS033	0.0078	97.3
SPWF24V148	3 SYNF23U16	0	100 TRIF22T7704K	0.0079	99.1	LSRFQ0102	0.0188	99 LTCF22T342	0.0157	98.6
SPWF24V152	3 SYNF23U16	0	100 TRIF22T7704K	0.012	98.9	LTCF22T342	0.0356	97.6 OGWFS033	0	97.3
SPWF24V161	3 SYNF23U16	0.001	100 TRIF22T7704K	0.0156	98.7	LTCF22T342	0.043	97.3 OGWFS033	0.001	97.3
SPWF24V162	3 SYNF23U16	0	100 TRIF22T7704K	0.0127	98.8	LTCF22T342	0.0372	97.5 OGWFS033	0	97.3
SPWF24V171	3 SYNF23U16	0	100 TRIF22T7704K	0.0083	99.1	LTCF22T342	0.0284	98 LSRFQ0102	0.0451	97.6
SPWF24V158	3 SYNF23U16	0.0039	100 TRIF22T7704K	0.0078	99.3	LTCF22T342	0.0274	98.2 LSRFQ0102	0.0461	97.8
SPWF24V164	3 SYNF23U16	0	100 TRIF22T7704K	0.0088	99	LSRFQ0102	0.0246	98.7 LTCF22T342	0.0176	98.6
SPWF24V167	3 SYNF23U16	0	100 TRIF22T7704K	0.0156	98.7	OGWF5033	0	97.3 LTCF22T342	0.043	97.2
SPWF24V168	3 SYNF23U16	0	100 TRIF22T7704K	0.0083	99.1	LSRFQ0102	0.0216	98.9 LTCF22T342	0.0166	98.6
SPWF24V151	3 SYNF23U16	0	100 TRIF22T7704K	0.0122	98.9	LSRFQ0102	0.034	98.2 LTCF22T342	0.0245	98.2
SPWF24V155	3 SYNF23U16	0	100 TRIF22T7704K	0.0122	98.9	LSRFQ0102	0.0339	98.2 LTCF22T342	0.0244	98.2
SPWF24V178	3 SYNF23U16	0	100 TRIF22T7704K	0.0132	98.8	LTCF22T342	0.0264	98.1 LSRFQ0102	0.0397	97.9
SPWF24V182	3 SYNF23U16	0.0078	100 TRIF22T7704K	0.0085	99.4	LTCF22T342	0.0171	99 LSRFQ0102	0.0338	98.6
SPWF24V153	3 OGWFS033	0	100 MMMF22T0725	0	98	GINFS650	0	95.2 MAXFS25	0	95.1
SPWF24V189	3 OGWFS033	0	100 MMMF22T0725	0	98	GINFS650	0	95.2 MAXFS25	0	95.1
SPWF24V125	3 OGWF5033	0	100 MMMF22T0725	0	98	GINFS650	0	95.2 MAXFS25	0	95.1
SPWF24V139	3 OGWFS033	0	100 MMMF22T0725	0	98	GINFS650	0	95.2 BPGFS0054	0.0157	95.1
SPWF24V150	3 OGWF5033	0	100 MMMF22T0725	0	98	GINFS650	0	95.2 BPGFS0054	0.0157	95.1
SPWF24V149	3 OGWFS033	0	100 GINFS650	0	95.2	MAXFS25	0	95.1 IGWFM0352	0.0157	93.5
SPWF24V154	3 OGWFS033	0.002	100 MMMF22T0725	0.0029	97.9	BPGFS0054	0.0167	95.2 MAXFS25	0.001	95.1
SPWF24V157	3 OGWFS033	0	100 GINFS650	0	95.2	MAXFS25	0	95.1 IGWFM0352	0.0244	93.1
SPWF24V172	3 OGWFS033	0.002	100 MMMF22T0725	0.0029	97.9	BPGFS0054	0.0167	95.2 MAXFS25	0.001	
SPWF24V186	3 OGWF9033	0	100 MMMF22T0725	0	98	GINFS650	0	95.2 MAXFS25	0	95.1
SPWF24V185	3 OGWFS033	0	100 MMMF22T0725	0	98	GINFS650	0	95.2 MAXFS25	0	95.1
SPWF24V170	3 WYNFR308H	0.002	100 SYNF23U16	0	92.4	TRIF22T7704K	0.0039	91.7 LTCF22T342	0.0195	91
SPWF24V175	3 WYNFR308H	0.002	100 SYNF23U16	0	92.4	TRIF22T7704K	0.0039	91.7 LTCF22T342	0.0195	
SPWF24V180	3 WYNFR308H	0.002	100 SYNF23U16	0	92.4	TRIF22T7704K	0.0039	91.7 LTCF22T342	0.0195	91
SPWF24V100	3 WYNFR308H	0.0039	100 SYNF23U16	0	92.5	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V102	3 WYNFR308H	0.0039	100 SYNF23U16	0	92.5	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V104	3 WYNFR308H	0.0039	100 SYNF23U16	0	92.5	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V105	3 WYNFR308H	0.0039	100 SYNF23U16	0	92.5	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V106	3 WYNFR308H	0.0039	100 SYNF23U16	0	92.5	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V110	3 WYNFR308H	0.0039	100 SYNF23U16	0	92.5	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V117	3 WYNFR308H	0.0039	100 SYNF23U16	0	925	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V124	3 WYNFR308H	0.0039	100 SYNF23U16	0		TRIF22T7704K		91.6 LTCF22T342	0.0391	90.1
SPWF24V174	3 WYNFR308H	0.0024	100 SYNF23U16	0		TRIF22T7704K		91.7 LTCF22T342	0.0205	
SPWF24V101	3 WYNFR308H	0.0039	100 SYNF23U16	0	925	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V109	3 WYNFR308H	0.0039	100 SYNF23U16	0	925	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V113	3 WYNFR308H	0.0039	100 SYNF23U16	0		TRIF22T7704K		91.6 LTCF22T342	0.0391	90.1
SPWF24V119	3 WYNFR308H	0.0039	100 SYNF23U16	0		TRIF22T7704K		91.6 LTCF22T342	0.0391	90.1
SPWF24V120	3 WYNFR308H	0.0039	100 SYNF23U16	0		TRIF22T7704K		91.6 LTCF22T342	0.0391	90.1
SPWF24V121	3 WYNFR308H	0.0039	100 SYNF23U16	0	92.5	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V122	3 WYNFR308H	0.0039	100 SYNF23U16	0	92.5	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V123	3 WYNFR308H	0.0039	100 SYNF23U16	0	92.5	TRIF22T7704K	0.0078	91.6 LTCF22T342	0.0391	90.1
SPWF24V159	3 WYNFR308H	0.0032	100 SYNF23U16	0		TRIF22T7704K	0.0044	91.8 LSRFQ0102	0.0152	91.7
SPWF24V160	3 WYNFR308H	0.0032	100 SYNF23U16	0	925	TRIF22T7704K	0.0044	91.8 LSRFQ0102	0.0152	91.7

Scenario 1 High BFI matings

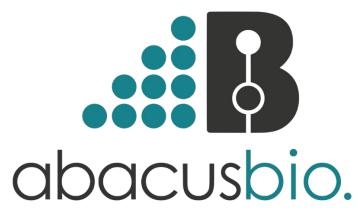
Scenario 2 Balanced BFI and Diversity



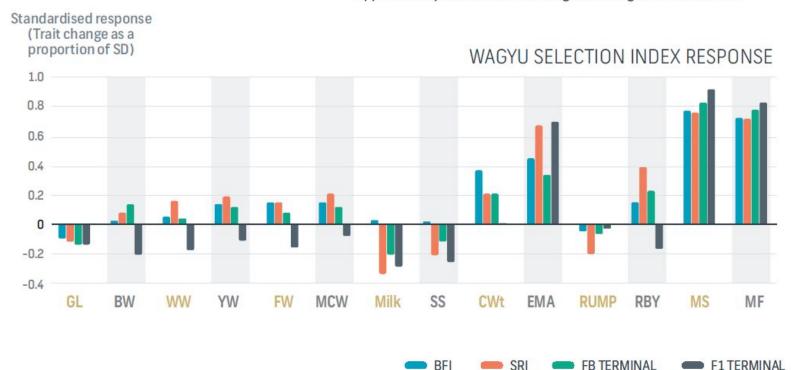


Scenario 2 Balanced BFI and Diversity

Scenario 3 Max Diversity



Scenario 3 Max Diversity

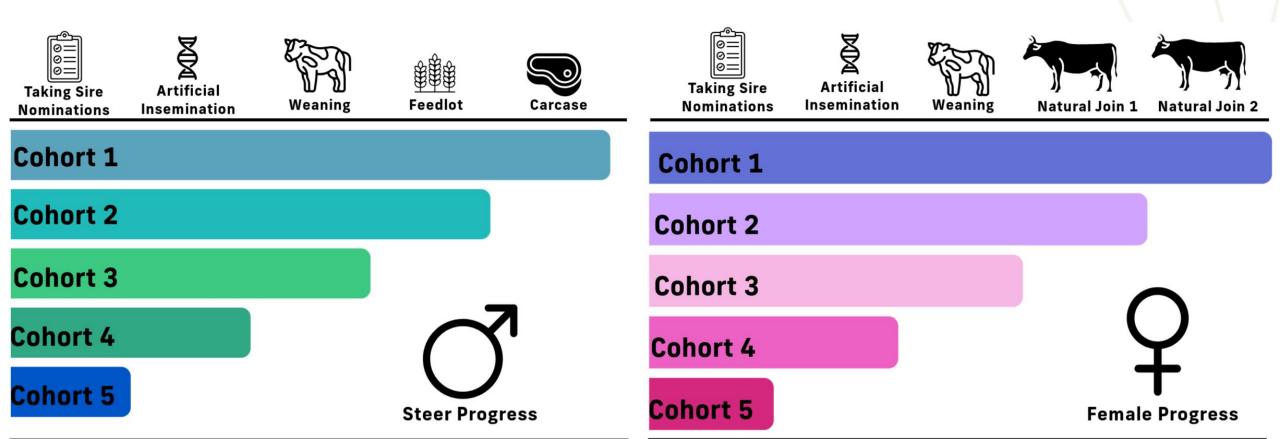


BRIDGING SCIENCE & BUSINESS

Breeding and Terminal Indexes

▽ FIGURE 6

Comparison of Index pressure on EBVs. Trait change is expressed in genetic standard deviations, with one standard deviation equivalent to approximately 30% of the available genetic range within the breed.


- Through collaboration with AbacusBio, the Breeder Feeder Index was introduced in FY2024.
- FBTI and F1TI now launched with AbacusBio
- Selection Indexes define breeding standards
- SRI due to turn off June 2025

Progeny Test Program – Currently

Progeny Test Program - Numbers

70
Domestic
Sires

4390 Straws sold via tender

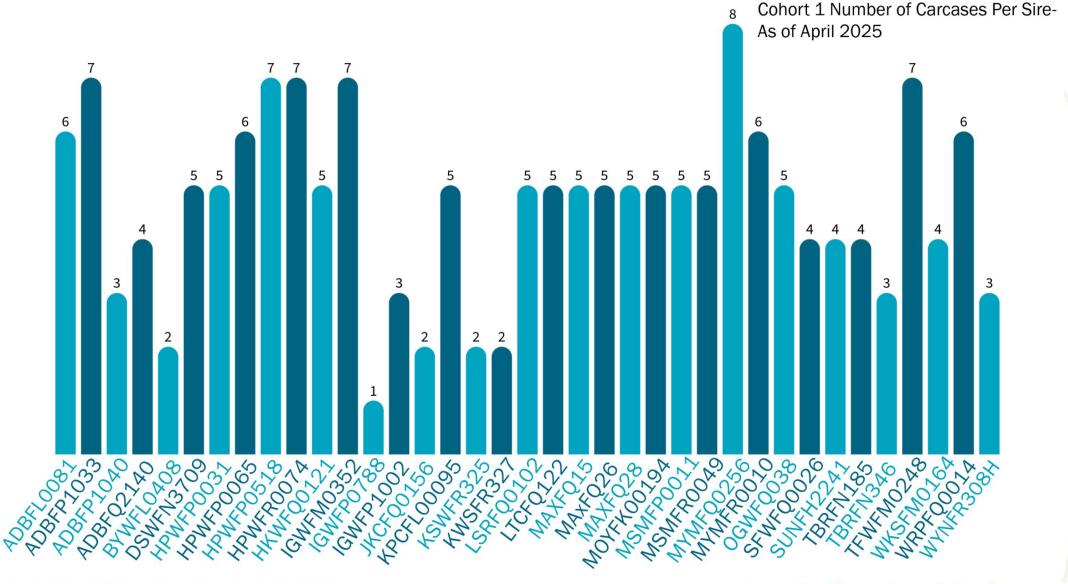
25
International
Sires

3700+
Cows in the program

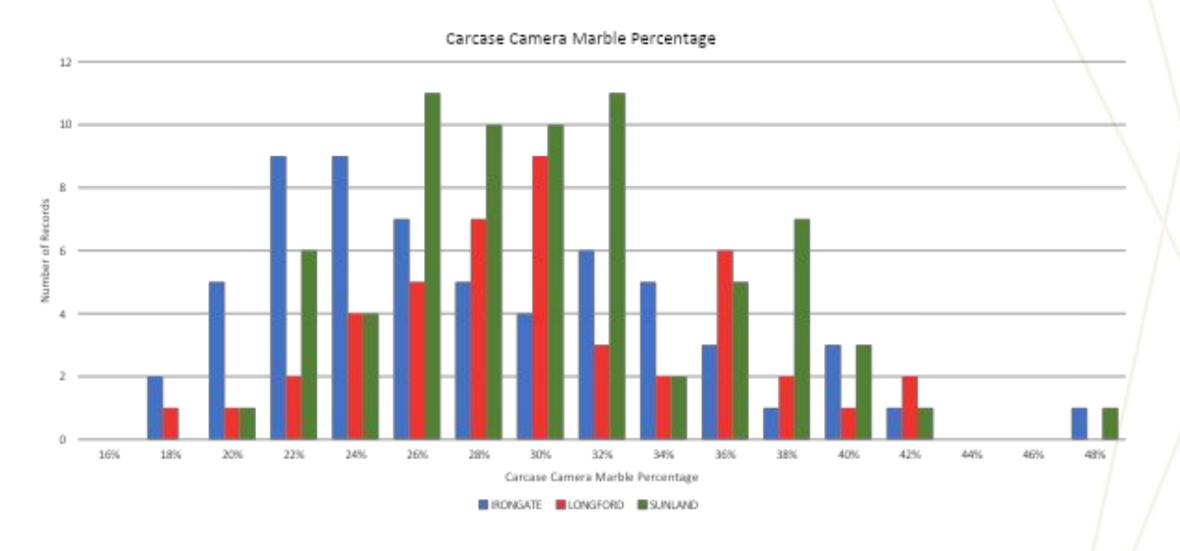
2 Benchmark Sires 13
Contributor
Herds

Progeny Test Program – Targets

12 Steer Progeny
Per Sire



12 Female Progeny Per sire



Progeny Test Program – Carcases Per Sire

Raw Marble Percentage – Contributor herd

Carcase Camera Marble Score – IGWFM0352

SUNF22T3132

MS 21.83% MS EBV +0.4

SUNF22T3147

MS 27.29% MS EBV +1.9

SUNF22T3152

MS 35.88%

MS EBV +3 MS EBV +2.3


SUNF22T3022

MS 37.23%

Marble Score Rank Changes

Sire	October 2024 EBV data				
Sile	MS EBV	MS Acc	Rank		
WYNFR308H	4.2	69%	1		
IGWFP0788	3.6	72%	2		
LSRFQ0102	3.6	72%	3		
ADBFP1040	3.4	93%	4		
IGWFM0352	3.3	94%	5		
MAXFQ28	3.3	70%	6		
ADBFP1033	3	89%	7		
HPWFP0518	2.9	69%	8		
HWKFQ0121	2.8	76%	9		
MSMFR0049	2.8	67%	10		
SFWFQ0026	2.6	92%	11		
WRPFQ0014	2.5	68%	12		
MYMFR0010	2.4	76%	13		
SUNFH2241	2.4	77%	14		
HPWFR0074	2.2	69%	15		
KSWFR325	2.2	68%	16		
LTCFQ122	2.2	89%	17		
MYMFQ0256	1.2	79%	18		
OGWFQ038	2.2	69%	19		
TBRFN185	2.2	67%	20		
HPWFP0031	2.1	69%	21		
TBRFN346	2.1	72%	22 /		
IGWFP1002	2	85%	Z		
DSWFN3709	1.9	70%	24		
MAXFQ15	1.9	71%	25		
MAXFQ26	1.9	69%	26		
JKCFQ0156	1.8	68%	27		
ADBFQ2140	1.7/	69%	28		
HPWFP0065	1.7	67%	29		
WKSFM0164	1.6	99%	30		
MSMFP0011	1.5	75%	31		
ADBFL0081	1.3	93%	32		
KSWFR327	1.2	69%	33		
BYWFL0408	0.8	70%	34		
KPCFL00095	0.8	70%	35		
MOYFK00194	0.5	77%	36		
TFWFM0248	0.5	71%	37		

Sire	April 2025 EBV data					
Sile	MS EBV	MS Acc	Rank			
WYNFR308H	4.8	76%	1			
LSRFQ0102	4.3	80%	2			
IGWFP0788	3.8	74%	3			
ADBFP1040	3.5	95%	4			
IGWFM0352	3.3	95%	5			
MAXFQ28	3.3	80%	6			
MSMFR0049	3.1	79%	7			
HWKFQ0121	3	83%	8			
TBRFN185	3	77%	9			
HPWFP0518	2.9	82%	10			
ADBFP1033	2.8	91%	11			
HPWFR0074	2.6	81%	12			
MYMFQ0256	2.6	88%	13			
SFWFQ0026	2.5	93%	14			
OGWFQ038	2.5	80%	15			
KSWFR325	2.4	74%	16			
MYMFR0010	2.3	84%	17			
MSMFP0011	2.3	81%	18			
WRPFQ0014	2.2	80%	19			
SUNFH2241	2.2	82%	20			
LTCFQ122	2.2	91%	21			
HPWFP0031	2.2	79%	22			
MAXFQ26	2.2	81%	23			
MAXFQ15	1.9	80%	24			
TBRFN346	1.8	81%	25			
IGWFP1002	1.7	87%	26			
DSWFN3709	1.7	78%	27			
WKSFM0164	1.6	99%	28			
JKCFQ0156	1.5	71%	29			
KSWFR327	1.5	74%	30			
ADBFQ2140	1.3	78%	31			
HPWFP0065	1	79%	32			
ADBFL0081	1	94%	33			
BYWFL0408	1	75%	34			
KPCFL00095	0.7	80%	35			
MOYFK00194	0.2	83%	36			
TFWFM0248	0.2	82%	37			

MIJ Mobile Application

- 68 Camera users world-wide

40 Australian-based

28 International-based

- Has an intuitive user interface for seamless operation, image review and upload
- Can run completely offline so can be used regardless or WiFi or mobile data connection
- Used world-wide with data contributing to Wagyu BREEDPLAN genetic analysis


MIJ Mobile now available to AWA members

- These devices costs \$3,000 USD
- This includes an MIJ database
- Ongoing technical support
- \$5 USD per image analysed.

BUILDING A GLOBAL WAGYU LANGUAGE

- 68 AWA members capturing images (now >150,000 images)
- 32,000 images captured last year
- Developing on-carcase fatty acid technology

FOR OUR MEMBERS. FOR THE INDUSTRY.

Australian Wagyu Association | wagyu.org.au

- NIR handheld scanning device Bluetooth to mobile r² 0.79
- 10 second scan can return MUFA and PUFA content percentages.
- Looking to launch later this year.
- Heritability 0.4 to 0.54, so its very selectable

Now it is time to measure it commercially and breed for it

